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Abstract
The temperature dependence of the static dielectric susceptibility of a system with strongly
coupled fluctuating dipoles is calculated within a self-consistent mean fluctuation field
approximation. Results are qualitatively in good agreement with a quantum paraelectric SrTiO3

in the low temperature regime. We identify this system as a gapped quantum paraelectric and
suggest a possible experimental realization of a quantum critical paraelectric through the
application of hydrostatic pressure or doping by impurity.

1. Introduction and summary

Phase transitions in displacive systems cannot be described
by an Ising type Hamiltonian, which is usually invoked for
a system going through an order–disorder transition. The
behavior of these systems is essentially governed by collective
oscillations of coupled dipoles and the phase transition is
described by a softening of the corresponding optical mode due
to thermal fluctuation [1, 2]. There are materials like SrTiO3

and KTaO3 which are supposed to show a displacive transition
similar to that which occurs in BaTiO3, but fail to do so. In fact,
there is a softening of optical phonon modes in these materials
also, but that does not lead to a transition even at very low
temperature [3, 4]. Instead, there is a strong enhancement
of the low temperature dielectric constant. For example,
in SrTiO3 the static dielectric susceptibility has a very high
saturated value (O(104)) at low temperature (∼10 K) followed
by a Curie regime (10–100 K) and a long tail thereafter. It
seems that the classical soft mode concept is insufficient to
describe various aspects of low temperature behavior. An
explanation of the unusual behavior of dielectric susceptibility
and the stability in the low temperature paraelectric phase has
been a long-standing puzzle. Long ago Barrett [5] gave a
semi-phenomenological theory, which essentially recasts the
Curie–Weiss formula with a replacement of temperature T
there by average energy; thereby the inverse of dielectric
susceptibility could be written as χ−1 ∝ T1 coth(T1/T ) −
Tc, where Tc is a classically calculated critical temperature
and T1 is a quantum scale O(h̄/mass). This theory, in the
high temperature limit, reproduces the Curie–Weiss law. To
match experimental data in SrTiO3 Barrett’s formula has been
found inadequate as one single constant quantum scale T1

cannot trace the full curve. The formula has since been
modified in various ways, for example, by introducing an extra
exponent [6], that is, by writing χ−1 as (T1 coth(T1/T ) −
Tc)

−ν , and by making T1 temperature-dependent with an extra
scale [7], to take care of various ‘anomalies’, for example
the one near 40 K. There has been a proposal to attribute
this extra energy scale to the structural transition which
occurs at 110 K [8]. These proposals either follow an order
parameter expansion similar to the Landau expansion or some
modifications thereof, hence they do not introduce any new
microscopic description. In SrTiO3 and KTaO3 there is no
ordering, therefore in the low temperature regime where the
dielectric constant is enhanced, the physics is dominated by
fluctuations of relevant microscopic degrees of freedom rather
than their averages. In this paper we analyze the fluctuation
in such systems within a self-consistent mean fluctuation field
approximation. There are mainly two parameters, namely
the anharmonicity parameter and the effective stiffness. The
zero-point or quantum fluctuation will be dominant when the
stiffness is small. The qualitative behavior of susceptibility is
reproduced as well as a new insight gained into the quantum
critical behavior of such systems. A mismatch in theory
and experimental curves for the dielectric constant at high
temperature can be attributed to the effect of a structural
transition which occurs at higher temperature (i.e. at 110 K
in SrTiO3). Such a discrepancy is irrelevant for the following
discussion which refers mainly to the low temperature regime.

2. Mean-field analysis

The low temperature physics of SrTiO3 is dominated by
fluctuations of Ti ions [9]. The Hamiltonian for such ions is
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modeled in terms of local quartic oscillators coupled with a
nearest-neighbor harmonic interaction [10]:

H =
∑

l

{
p2

l

2
+ 1

2
ω2

0u2
l + 1

4
λu4

l

}
− 1

2

∑

ll′
vul ul′ . (1)

The constants λ and v are assumed to be positive and mass
taken as unity. This Hamiltonian describes two local minima
with a nearest-neighbor coupling v. For |v| � |ω2

0| and
ω2

0 � 0, it mimics a two-state Ising system with Gaussian
fluctuations around one of the local minima. When |v| ∼ |ω2

0|,
there is a possibility of large tunneling between these minima.
In this regime the system has to be described in terms of its
collective behavior. Such a system is called a displacive system
and the limit |v| → |ω2

0| is called the displacive limit. In
momentum space

H =
∑

q

1
2 p2

q + 1
2

∑

q

(ω2
0 − vδ cos qa)uqu−q + 1

4λ

×
∑
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Here δ is the coordination number and a is the lattice spacing.
Now with pq = u̇q = −ıωuq in the kinetic energy term, finally
the Hamiltonian within the quasi-harmonic approximation, i.e.

∑

l

u4
l ≈ 6N(σ + 〈u〉2)

∑

q1

uq1 u−q1 (3)

where
σ =

∑

q
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+)〉 (4)

is given by
H = 1

2

∑
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(ω2
q − ω2)uqu−q (5)

where

ω2
q = ω2

0 − vδ cos qa + 3λσ 
 ω2
0 − v + vδa2q2 + 3λσ (6)

is the renormalized frequency for small q (such a truncation is
quite justified for low temperature properties of a near-critical
system). We are interested in the paraelectric phase of the
system, that is, where 〈u〉 = 0. Since the system is at low
temperature and the dielectric constant has an enhanced value,
〈u2〉 need not vanish, however. The purpose of the present
work is to present a self-consistent calculation of 〈u2〉 in the
classical as well as in the quantum regime. The susceptibility,
which is related to 〈u2〉, is essentially the phonon propagator:

χ(q, n) = − 1

(ıωn)2 − ω2
q

, ωn = 2nπT . (7)

With ωq given by equation (6) we have a self-consistent
equation:
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+)〉 = 1
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The solution of this equation will give σ(T ) which in its
asymptotic forms reduces to

σ =
∑

q

T

ω2
q

∼
∫

dq q2 T

ω2
0 − v + vδq2 + 3λσ

(Classical) (9)

=
∑

q

1

ωq
∼

∫
dq q2 1√

ω2
0 − v + vδq2 + 3λσ

(Quantum). (10)

To go into details of the temperature dependence of
susceptibility, we need to define some physically interesting
dimensionless parameters as 
 = −(ω2

0 − v)/ω2
0 , σc =

−(ω2
0 − v)/3λ and η = h̄/(2ω0σc) (h̄ is taken as unity in

this paper), so that 
 ∼ σc ∼ η−1. The parameter 


describes the effective stiffness for collective modes at the
harmonic level. The strength of coupling between various
modes near q = 0 is determined by σ−1

c while the parameter
η tells us about the vicinity to the quantum limit in the system.
Introducing normalized temperature x = T/mω2

0σc and using
the previously defined parameters, we rearrange equation (6)
as follows:

ω2
q

ω2
0

= vδa2q2

mω2
0

+ 


(
σ

σc
− 1

)
(11)

and
σ

σc
=

∑

q

ηω0

ωq
coth

(
ηωq

ω0x

)
. (12)

A self-consistent solution of these equations will give

χ(0, 0)−1 ∝ 


(
σ

σc
− 1

)
. (13)

For large enough 
 the system shows classical behavior, that
is, σ ∼ T from equation (9). The mode coupling would
give corrections higher order in temperature and Tc would
be proportional to 
. On the other hand, as 
 become
smaller and η becomes larger the system moves towards
the quantum domain. When 
 or Tc becomes identically
zero we have a quantum critical point. At this point the
zero temperature static long wavelength susceptibility also
diverges. Interestingly the 
 = 0 or ω2

0 = v limit is
the displacive limit, well known in the structural transition
literature. A non-self-consistent estimate, with a temperature-
dependent momentum cutoff (qmax ∼ T ), tells us that σ starts
from a constant value in the low temperature side and then
follows a T 2 behavior in the high temperature (up to Debye
temperature) side. Such a non-self-consistent estimate gives
quite correct results when the system is far away from the
quantum critical point, i.e. |(ω2

0 − v)/3λσ | � 1. At the
quantum critical point, an estimation of the self-consistent
correction is also ∼T 2. The Barret formula cannot reproduce
this result. That formula is essentially the outcome of quantum
fluctuations in a single-mode theory, which would fail near the
quantum critical point as many modes and their coupling would
dominate the behavior of the system there. This necessitates
a self-consistent calculation for quantum paraelectrics near
their quantum critical point. From figure 1, we learn that
the high value of the static dielectric susceptibility of SrTiO3
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Figure 1. Numerical solution shows saturation in static susceptibility
(in units of 104) versus temperature curve. This curve is in good
agreement with Muller’s experiment on the low temperature side,
with vδa2

ω2
0

= 1,
 = 0.003, η = 1/
, qmax = 0.1 and at the end χ

and T are rescaled with 0.4/
 and 30
, respectively. The lower
curve is the non-self-consistent fit with the same parameters as the
upper one but with rescaling of χ and T by 9.5 and 100, respectively.

is attributed to the smallness of the parameter 
(=0.003).
This motivates us to treat this system to be near the quantum
critical point. The static dielectric susceptibility data of SrTiO3

remind us of the behavior of itinerant fermionic systems near
the quantum phase transition point and the fluctuation regime
around that. There the (staggered) magnetic susceptibility
diverges for the (anti-)ferromagnetic transition as the coupling
constant crosses a critical value [11]. The case of SrTiO3 is
similar to that of liquid helium-3 [12], where the magnetic
susceptibility gets enhanced, as large as ten times, depending
upon pressure, from its free fermionic value.

3. Quantum criticality and hydrostatic pressure
at QCP

After the above identification we now focus on theoretical
aspects of quantum criticality in ferroelectric systems. At zero
temperature the zero-mode fluctuation is the most dominant.
From equation (12) it is clear that the zero-temperature
fluctuation σs is given by

σs/σc = η
ω0

ωq
= η√


(σs/σc − 1)
. (14)

Writing σs/σc as y we get

y3 − y2 − a = 0, a = η2



. (15)

This tells us if a = 0 then σs = 0 is a solution, which is the
classical limit. For a �= 0 all solutions become non-zero and
since y3 − y2 = a � 0 that means y � 1. Thus σs � σ0;
moreover the σs increases as a increases. The meaning of
quantum criticality, in terms of y, is y → 1. In that limit
the zero-temperature properties will show a scaling behavior

Figure 2. Schematic phase diagram of a typical quantum paraelectric
system.

Figure 3. Temperature variation of susceptibility at different values
of 
 and the log–log plot of the same.

with (the inverse of correlation length) χ−1 ∼ 
(y − 1) ∼
η2 ∼ (1 − v/ω2

0)
2. If we define a quantum scale ξQ =

(1 − v/ω2
0)

− 1
2 , then χ ∼ ξ−4

Q . The point y = 1 is essentially
the point where effective stiffness (
) changes sign. In the
regime 
 � 0 self-consistency in fluctuation breaks down, the
system seeks ordering and hence an expansion about the non-
zero 〈u〉 is required. In this case the transition temperature
Tc ∼ 


1
2 . On the other hand, in the 
 � 0 regime the system

cannot have any ordering and its behavior has to described
by self-consistent fluctuations. There is a characteristic
temperature (crossover temperature in modern parlance [13])
T ∗ ∼ 


1
2 which demarcates the boundary between the low

temperature gapped quantum paraelectric behavior and the
classical behavior (figure 2). In the case of SrTiO3, the plateau
in the susceptibility versus temperature curve is the signature
of gapped quantum paraelectric behavior. There is no transition
in this system. But there is a crossover from low temperature
quantum to high temperature classical behavior at the crossover
temperature T ∗ (∼10 K). This is exactly the temperature where
the plateau ends and the susceptibility curve starts following
a Curie behavior (figures 1 and 3). One can now hope to
reach 
 = 0 through tuning some parameters like pressure,
impurity, etc. The width of this plateau regime vanishes at
this point and the system becomes quantum critical. At this
point thermodynamics will be described by power laws in
temperature (e.g. χ(0, 0)−1 ∼ T −2) and the system will show
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some non-trivial dynamics. The latter is beyond the scope of
the present work. It is quite evident here that the controlling
factor v/mω2

0 strongly depends upon structural aspects and
hence this quantumness in SrTiO3 can be properly understood
through some intrinsic mechanism which gives rise to such
large tunneling.

A good possibility for exploring the physics near such
a quantum critical point is through application of hydrostatic
pressure. Such a technique has already been used in the case
of ferroelectrics and quantum paraelectrics for some time [14]
and more recently [15] in different contexts. We found that
those experimental results can be discussed more interestingly
as is done in the context recently of an itinerant magnetic
system [16]. Application of hydrostatic pressure will couple
to the optical mode via its coupling to the acoustic mode. In
this case the starting Hamiltonian takes the form

H = 1

2

∫
dq[p2

q + (ω2
0 − vδ cos qa)uqu−q] + λ

4

×
∫

4
i=1(dqi uqi )δ

(∑

i

qi

)
+ g

∫
dk dq ε(k) uquk−q

+ K

2

∫
dq ε2(q) − pε(0). (16)

Here the last three terms are the results of applications of
pressure, in the lowest possible order. The parameter g couples
strain fields to unit cell displacement related to the optical
mode, K is the force constant for harmonic acoustic phonons
and the last term shows the coupling of the hydrostatic pressure
p to the static strain with some unit strength. Now if the
pressure is strong enough ε has a minima at ε = ε(0) and
is given by

ε(0) = p/K . (17)

Integrating out the strain field, we get an effective Hamiltonian:

H =
∫

dq
[

1
2 p2

q + 1
2 (ω2

0 + gp − vδ cos qa)uqu−q
]

+ 1
4λR

∫
i dqi uq1uq2 uq3 u−q1−q2−q3 (18)

with a renormalized coupling constant of quartic term

λR =
(

λ − 2g2

K

)
. (19)

Again we write a self-consistent equation for paraelectric
fluctuations as

σ =
∫

ddq
1

ωq
coth

(
ωq

T

)
(20)

where

ω2(q) = 3
λ(1 + p/p0) + vδq2a2/2 + 3λRσ

and p0 = 3K
λ

g
. (21)

Up to this point the result is just a renormalization of the
factor 
 as 
(1 + p/p0) and it becomes an experimentally
controllable parameter. Also the behavior of susceptibility at
different values of 
 is shown in the figure. In this proposal

we assume the positivity of λR. Otherwise the transition will be
first order and the scaling behavior will not be valid. In real life
one can try to induce the effect of negative pressure required
in these systems to achieve QCP through some homogeneous
effects of non-polar impurity. But in either case the nature of
the transition can be modified because of strain coupling or
disorder, respectively. Analysis of such a transition in these
materials will be discussed in an upcoming paper [17].

4. Discussion

We have shown that a mean fluctuation field theory within a
quasi-harmonic approximation reproduces the low temperature
behavior of susceptibility of a quantum paraelectric quite
well. The short range model studied here is justified since
only transverse optical modes are involved in the ferroelectric
fluctuations. In the presence of a long range force the
longitudinal mode becomes stiff and only transverse modes can
get soft. The presence of long range dipolar forces can induce
a certain amount of anisotropy in the transverse modes, which
can certainly change the critical behavior, however, only with
a fairly large value of dipolar contribution to anisotropy in the
quadratic term [18]. We are not aware of first-principles results
for anisotropy parameters in the case of SrTiO3 or KTaO3.
However, first-principles calculations support our choice of
parameter for the effective stiffness. Compared to BaTiO3

it is about 20 times smaller (table V in [19]) for SrTiO3,
which makes it more near the quantum domain. On the other
hand, the lattice-induced anisotropy in the quartic term is of
the same order of magnitude and it would not play a key
role in distinguishing the low temperature behavior in these
systems. We leave discussions on anisotropy dependence for
future work and stick to the isotropic short range model. It is
also clear that there is no need to introduce an ‘anomalous’
regime as proposed earlier. That proposal might be due to
the insistence on comparing experimental results with Barrett’s
formula and its extensions. The experimental behavior
is well accounted for in the quantum region and at high
temperature the susceptibility smoothly crosses over to the
classical behavior. Here we have focused more on the physics
of low temperature behavior than the exact calculation of
various properties. Thus the structural aspects and anisotropy
effects are not attempted here.
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